Suma y resta de monomios
Para poder sumar dos o más monomios estos han de ser monomios semejantes, es decir, monomios que tienen la misma parte literal.
La suma de monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
Ejemplos:
Si los monomios no son semejantes, al sumarlos, se obtiene un polinomio.
Ejemplo:
no se pueden sumar.
Suma y resta de polinomios
Para realizar la suma de dos o más polinomios, se debe sumar los coeficientes de los términos cuya parte literal sean iguales, es decir, las variables y exponentes (o grados) deben ser los mismos en los términos a sumar.
Método 1 para sumar polinomios
Pasos:
1 Ordenar los polinomios del término de mayor grado al de menor.
2 Agrupar los monomios del mismo grado.
3 Sumar los monomios semejantes.
Ejemplo del primer método para sumar polinomios
Sumar los polinomios P(x) = 2x³ + 5x − 3, Q(x) = 4x − 3x² + 2x³.
1Ordenamos los polinomios, si no lo están.
P(x) = 2x³ + 5x − 3
Q(x) = 2x³ − 3x² + 4x
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = (2x³ + 5x − 3) + (2x³ − 3x² + 4x)
P(x) + Q(x) = (2x³ + 2x³) + (− 3 x²) + (5x + 4x) + (− 3)
3Sumamos los monomios semejantes.
P(x) + Q(x) = 4x³ − 3x² + 9x − 3
Método 2 para sumar polinomios
También podemos sumar polinomios escribiendo uno debajo del otro, de forma que los monomios semejantes queden en columnas y se puedan sumar.
Ejemplo del segundo método para sumar polinomios
Sumar los polinomios P(x) = 7x4 + 4x² + 7x + 2, Q(x) = 6x³ + 8x +3.
1Acomodar en columnas a los términos de mayor a menor grado, y sumar.
Así,
2P(x) + Q(x) = 7x4 + 6x³ + 4x² + 15x + 5
No hay comentarios:
Publicar un comentario